An Inductive Construction for Plane Laman Graphs via Vertex Splitting

نویسندگان

  • Zsolt Fekete
  • Tibor Jordán
  • Walter Whiteley
چکیده

We prove that all planar Laman graphs (i.e. minimally generically rigid graphs with a non-crossing planar embedding) can be generated from a single edge by a sequence of vertex splits. It has been shown recently [6,12] that a graph has a pointed pseudo-triangular embedding if and only if it is a planar Laman graph. Due to this connection, our result gives a new tool for attacking problems in the area of pseudotriangulations and related geometric objects. One advantage of vertex splitting over alternate constructions, such as edge-splitting, is that vertex splitting is geometrically more local. We also give new inductive constructions for duals of planar Laman graphs and for planar generically rigid graphs containing a unique rigidity circuit. Our constructions can be found in O(n) time, which matches the best running time bound that has been achieved for other inductive contructions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of Generically Rigid Frameworks on Surfaces of Revolution

A foundational theorem of Laman provides a counting characterisation of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks in three dimensions whose vertices are constrained to concentric spheres or to concentric cylinders. Noting that the plane and the sphere have 3 independ...

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

An inductive construction of (2, 1)-tight graphs

The graphs G = (V,E) with |E| = 2|V | − ` that satisfy |E′| ≤ 2|V ′| − ` for any subgraph G′ = (V ′, E′) (and for ` = 1, 2, 3) are the (2, `)-tight graphs. The Henneberg–Laman theorem characterizes (2, 3)-tight graphs inductively in terms of two simple moves, known as the Henneberg moves. Recently, this has been extended, via the addition of a graph extension move, to the case of (2, 2)-tight s...

متن کامل

Symmetric Laman theorems for the groups

For a bar and joint framework (G, p) with point group C3 which describes 3-fold rotational symmetry in the plane, it was recently shown in (Schulze, Discret. Comp. Geom. 44:946-972) that the standard Laman conditions, together with the condition derived in (Connelly et al., Int. J. Solids Struct. 46:762-773) that no vertices are fixed by the automorphism corresponding to the 3-fold rotation (ge...

متن کامل

The Non-solvability by Radicals of Generic 3-connected Planar Laman Graphs

We show that planar embeddable 3-connected Laman graphs are generically non-soluble. A Laman graph represents a configuration of points on the Euclidean plane with just enough distance specifications between them to ensure rigidity. Formally, a Laman graph is a maximally independent graph, that is, one that satisfies the vertex-edge count 2v − 3 = e together with a corresponding inequality for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004