An Inductive Construction for Plane Laman Graphs via Vertex Splitting
نویسندگان
چکیده
We prove that all planar Laman graphs (i.e. minimally generically rigid graphs with a non-crossing planar embedding) can be generated from a single edge by a sequence of vertex splits. It has been shown recently [6,12] that a graph has a pointed pseudo-triangular embedding if and only if it is a planar Laman graph. Due to this connection, our result gives a new tool for attacking problems in the area of pseudotriangulations and related geometric objects. One advantage of vertex splitting over alternate constructions, such as edge-splitting, is that vertex splitting is geometrically more local. We also give new inductive constructions for duals of planar Laman graphs and for planar generically rigid graphs containing a unique rigidity circuit. Our constructions can be found in O(n) time, which matches the best running time bound that has been achieved for other inductive contructions.
منابع مشابه
A Characterization of Generically Rigid Frameworks on Surfaces of Revolution
A foundational theorem of Laman provides a counting characterisation of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks in three dimensions whose vertices are constrained to concentric spheres or to concentric cylinders. Noting that the plane and the sphere have 3 independ...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملAn inductive construction of (2, 1)-tight graphs
The graphs G = (V,E) with |E| = 2|V | − ` that satisfy |E′| ≤ 2|V ′| − ` for any subgraph G′ = (V ′, E′) (and for ` = 1, 2, 3) are the (2, `)-tight graphs. The Henneberg–Laman theorem characterizes (2, 3)-tight graphs inductively in terms of two simple moves, known as the Henneberg moves. Recently, this has been extended, via the addition of a graph extension move, to the case of (2, 2)-tight s...
متن کاملSymmetric Laman theorems for the groups
For a bar and joint framework (G, p) with point group C3 which describes 3-fold rotational symmetry in the plane, it was recently shown in (Schulze, Discret. Comp. Geom. 44:946-972) that the standard Laman conditions, together with the condition derived in (Connelly et al., Int. J. Solids Struct. 46:762-773) that no vertices are fixed by the automorphism corresponding to the 3-fold rotation (ge...
متن کاملThe Non-solvability by Radicals of Generic 3-connected Planar Laman Graphs
We show that planar embeddable 3-connected Laman graphs are generically non-soluble. A Laman graph represents a configuration of points on the Euclidean plane with just enough distance specifications between them to ensure rigidity. Formally, a Laman graph is a maximally independent graph, that is, one that satisfies the vertex-edge count 2v − 3 = e together with a corresponding inequality for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004